V102Q123A-940

Features:

- Package: QFN Package
- ESD: 2 kV acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 2)
- IR laser wavelength 940nm
- VCSEL power array
- 1 Watt up to 2.5 Watts of power
- Die size $0.870 \times 0.870 \mathrm{~nm}$
- Package size: (WxDxH) $2.4 \mathrm{~mm} \times 3.3 \mathrm{~mm} \times 1.2 \mathrm{~mm}$
- IR Laser with photodiode

Applications

- 3D Capturing
- Access Control (IRIS/Vein Scan, Face Recognition)
- Augmented Reality, Mixed Reality
- Gesture Recognition
- Virtual Reality

Note

Depending on the mode of operation, these devices emit highly concentrated non visible infrared light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1 "Safety of laser products".

Ordering Information

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=2.7 \mathrm{~A}, \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \mathrm{D}=0.05$

Type	Peak output power $P_{\text {opt }}[W]$	Ordering Code
V102Q123A-940	typ. 2	Q65112A9854

Maximum Ratings

Parameter	Symbol	Values	Unit
Operating temperature range $\left(85^{\circ} \mathrm{C}\right.$ with reduced efficiency)	T_{op}	$-20 \ldots 85$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	$-40 \ldots 85$	${ }^{\circ} \mathrm{C}$
Soldering temperature $\left(\mathrm{t}_{\text {max }}=10\right.$ s)	T_{S}	260	${ }^{\circ} \mathrm{C}$
ESD withstand voltage (acc. to ANSI/ ESDA/ JEDEC JS-001 - HBM $)$	$\mathrm{V}_{\text {ESD }}$	2	kV

IR Laser

Forward Current (CW mode)	I_{F}	2.5	A
Surge current $\left(\mathrm{t}_{\mathrm{p}} \leq 600 \mu \mathrm{~s}, \mathrm{D}=0.01\right)$	$\mathrm{I}_{\mathrm{FSM}}$	4	A
Reverse voltage ${ }^{2 \text {) page 14 }}$	V_{R}	5	V

Photodiode

Reverse voltage	V_{R}	5	V

Note: \quad Stresses beyond those listed under Maximum Ratings may cause permanent damage to the device.
Characteristics $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{tp}=300 \mu \mathrm{~s} ; \mathrm{D}=0.05\right)$

Parameter	Symbol	Values	Unit

IR Laser

Peak emission wavelength ${ }^{\text {5) page } 14}$	(min) (typ (max)	$\lambda_{\text {peak }}$	$\begin{aligned} & 930 \\ & 945 \end{aligned}$	nm nm	
Peak output power 1) page 14 ($\mathrm{I}_{\mathrm{F}}=2.7 \mathrm{~A}$)	$\begin{aligned} & (\min) \\ & (\text { typ }) \end{aligned}$	$\mathrm{P}_{\text {opt }}$	$\begin{gathered} 2.0 \\ 2.15 \end{gathered}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$	
Threshold current	$\begin{aligned} & \text { (typ) } \\ & (\max) \end{aligned}$	Ith	$\begin{aligned} & 0.25 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$	
Slope efficiency ($\mathrm{I}_{\mathrm{F}}=0.1 \mathrm{~W} . . .0 .5 \mathrm{~W}$)	$\begin{aligned} & (\min) \\ & (\mathrm{typ}) \end{aligned}$	η	$\begin{gathered} 0.7 \\ 0.85 \end{gathered}$	W/A W/A	
Power conversion efficiency $\left(I_{F}=2.7 \mathrm{~A}\right)$	(typ)	$\eta_{\text {tot }}$	38	\%	
Field of View incl. OE (HFOV)	(min)	$\Theta_{\\|}$	50	-	
Field of View incl. OE (VFOV)	(min)	Θ_{\perp}	63	-	
Chip dimensions	(typ)	Lx W	0.87×0.87	$\mathrm{mm} \mathrm{x}$ mm	

Parameter		Symbol	Values	Unit
Rise and fall times of $\mathrm{I}_{\mathrm{e}}\left(20 \%\right.$ and 80% of $\left.\mathrm{I}_{\mathrm{e} \text { max }}\right)$	(typ)	$\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}$	1	ns
Forward voltage 4) page 14	(min)		1.75	V
$\left(\mathrm{I}_{\mathrm{F}}=2.7 \mathrm{~A}\right)$	(typ)	V_{F}	2.2	V
	(max)		2.25	V
Temperature coefficient of Wavelength	(typ)	TC_{λ}	0.07	$\mathrm{~nm} / \mathrm{K}$
Thermal resistance junction solder point real	(\max)	$\mathrm{R}_{\mathrm{th} \mathrm{JS}}$	11	$\mathrm{~K} / \mathrm{W}$

Photodiode

Wavelength of max sensitivity	(typ)	$\lambda_{\text {S max }}$	910	nm
Spectral range of sensitivity	(typ)	$\lambda_{10 \%}$	400 ... 1100	nm
Photocurrent $\left(\lambda=940 \mathrm{~nm}, \mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \mathrm{~V}_{\mathrm{R}}=3.3 \mathrm{~V}\right)$	(typ)	I_{P}	310	nA
Photocurrent (Std. light $A, E_{V}=1000 \mathrm{Ix} ; \mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}$)	(typ)	I_{P}	890	nA
Photocurrent ${ }^{3)}$ page 14 (with VCSEL @ $\mathrm{I}_{\mathrm{F}}=2.7 \mathrm{~A}, \mathrm{~V}_{\mathrm{R}}=3.3 \mathrm{~V}$)	(min) (typ) (max)	I_{P}	$\begin{aligned} & \hline 420 \\ & 600 \\ & 680 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Dark current $\left(\mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}\right)$	$\begin{aligned} & \text { (typ) } \\ & \text { (max) } \end{aligned}$	$\mathrm{I}_{\text {R }}$	$\begin{aligned} & \hline 0.1 \\ & 30 \end{aligned}$	$\begin{aligned} & \hline \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Chip dimensions	(typ)	LxW	0.36×0.36	$\begin{aligned} & \mathrm{mm} x \\ & \mathrm{~mm} \end{aligned}$
Rise and fall time (10% and 90%) ($\lambda=940 \mathrm{~nm}, \mathrm{~V}_{\mathrm{R}}=3.3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$)	(typ)	$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	320/200	ns
Forward voltage ${ }^{4 \text {) page } 14}$ ($\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{E}=0$)	$\begin{aligned} & \text { (typ) } \\ & \text { (max) } \end{aligned}$	$V_{\text {F }}$	$\begin{gathered} 0.9 \\ 1.25 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Open-circuit voltage $\left(\lambda=940 \mathrm{~nm}, \mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}\right)$	(typ)	V_{0}	260	mV
Short-circuit current $\left(\lambda=940 \mathrm{~nm}, \mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}\right)$	(typ)	I_{sc}	270	nA
Short-circuit current (Std. light A, $\mathrm{E}_{\mathrm{v}}=1000 \mathrm{~lx}, \mathrm{~V}_{\mathrm{R}}=0 \mathrm{~V}$)	(typ)	I_{sc}	810	nA
Capacitance ($\mathrm{E}_{\mathrm{e}}=0 \mathrm{~mW} / \mathrm{cm}^{2}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}$)	(typ)	C_{0}	2.1	pF
Temperature coefficient of Sensitivity $\left(\lambda=940 \mathrm{~nm}, \mathrm{E}_{\mathrm{e}}=0.5 \mathrm{~mW} / \mathrm{cm}^{2}, \mathrm{~V}_{\mathrm{R}}=3.3 \mathrm{~V}\right)$	(typ)	TC,	0.23	\%/K
Temperature coefficient of Voltage ($\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{E}=0$)	(typ)	TC ${ }_{V}$	-1.2	mV / K

Diagrams

IR Laser

Relative Spectral Emission ${ }^{6)}$ page 14
$I_{\text {rel }}=f(\lambda), t_{p}=300 \mu \mathrm{~s} ; D=0.05, T_{A}=25^{\circ} \mathrm{C}$

Forward Current ${ }^{6)}$ page 14
$I_{F}=f\left(V_{F}\right), t_{p}=300 \mu \mathrm{~s} ; \mathrm{D}=0.05, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Optical output power ${ }^{6)}$ page 14
$P_{\text {opt }}=f\left(I_{F}\right), t_{p}=300 \mu \mathrm{~s} ; D=0.05, T_{A}=25^{\circ} \mathrm{C}$

Max. Permissible Forward Current

$I_{F, \max }=f\left(T_{A}\right), R_{\text {th } J S}=11 \mathrm{~K} / \mathrm{W}$

Permissible Pulse Handling Capability

$I_{F}=f\left(t_{p}\right), T_{A}=25^{\circ} \mathrm{C}$, duty cycle $D=$ parameter

Permissible Pulse Handling Capability

$I_{F}=f\left(t_{p}\right), T_{A}=85^{\circ} \mathrm{C}$, duty cycle $D=$ parameter

Far-Field Illumination Pattern 6) page 14

$\mathrm{I}_{\text {rel }}=\mathrm{f}(\phi), \mathrm{t}_{\mathrm{p}}=300 \mu \mathrm{~s} ; \mathrm{D}=0.05, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	Min	Typ	Max
$\mathbf{1}$	100%	100%	100%
$\mathbf{2}$	90%	105%	135%
$\mathbf{3}$	75%	90%	130%
$\mathbf{4}$	105%	135%	160%
$\mathbf{5}$	75%	90%	130%
$\mathbf{6}$	90%	105%	135%
$\mathbf{7}$	75%	90%	130%
$\mathbf{8}$	105%	135%	160%
$\mathbf{9}$	75%	90%	130%
A	65%	80%	110%
\mathbf{B}	65%	80%	110%
\mathbf{C}	65%	80%	110%
D	65%	80%	110%

----- $\mathrm{FOI}=50^{\circ}(\mathrm{h}) \times 63^{\circ}(\mathrm{v})$

Diagrams

Photodiode

Relative Spectral Sensitivity ${ }^{6) \text { page } 14}$
$S_{\text {rel }}=f(\lambda), V_{R}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Photocurrent ${ }^{6)}$ page 14
$I_{P}=f\left(E_{e}\right), V_{R}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Dark Current ${ }^{6)}$ page 14

$I_{R}=f\left(V_{R}\right)$

Dark Current ${ }^{6)}$ page 14

$I_{R}=f\left(T_{A}\right), V_{R}=3.3 V$

Photocurrent ${ }^{6)}$ page 14
$\mathrm{I}_{\mathrm{P}, \text { rel }}=\mathrm{f}\left(\mathrm{I}_{\mathrm{F}, \text { emitter }}\right), \mathrm{V}_{\mathrm{R}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Capacitance ${ }^{\text {6) page } 14}$
$C=f\left(V_{R}\right), f=1 \mathrm{MHz}, T_{A}=25^{\circ} \mathrm{C}$

Dimensional Drawing ${ }^{7)}$ page 14

C67062-A0307-A2..-02

Dimensions in mm.

Approximate Weight:

20 mg

Electrical internal circuit

Recommended Solder Pad

D/A solder resist

solder stencil

Component Location on Pad

Dimensions in mm.
Reflow Soldering Profile
Product complies to MSL Level 3 acc. to JEDEC J-STD-020E

Profil-Charakteristik Profile Feature	Symbol Symbol	Pb-Free (SnAgCu) Assembly			Einheit Unit
		Minimum	Recommendation	Maximum	
Ramp-up Rate to Preheat*) $25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$			2	3	K/s
$\begin{aligned} & \text { Time } t_{S} \\ & \mathrm{~T}_{\mathrm{Smin}} \text { to } \mathrm{T}_{\mathrm{Smax}} \end{aligned}$	$\mathrm{t}_{\text {s }}$	60	100	120	s
Ramp-up Rate to Peak*) $\mathrm{T}_{\mathrm{Smax}}$ to T_{P}			2	3	K/s
Liquidus Temperature	T_{L}		217		${ }^{\circ} \mathrm{C}$
Time above Liquidus temperature	t_{L}		80	100	S
Peak Temperature	T_{P}		245	260	${ }^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of the specified peak temperature $T_{P}-5 \mathrm{~K}$	t_{p}	10	20	30	S
Ramp-down Rate* T_{p} to $100^{\circ} \mathrm{C}$			3	6	K/s
$\begin{aligned} & \text { Time } \\ & 25^{\circ} \mathrm{C} \text { to } \mathrm{T}_{\mathrm{P}} \end{aligned}$				480	S

All temperatures refer to the center of the package, measured on the top of the component

* slope calculation DT/Dt: Dt max. 5 s ; fulfillment for the whole T-range

Taping

Dimensions in mm.

Tape and Reel

12 mm tape with 2000 pcs. on $\varnothing 180 \mathrm{~mm}$ or 8000 pcs. on $\varnothing 330 \mathrm{~mm}$ reel

Reel dimensions [mm]

\mathbf{A}	\mathbf{W}	$\mathbf{N}_{\min }$	$\mathbf{W}_{\mathbf{1}}$	$\mathbf{W}_{2 \max }$
180	12	60	12.4	18.4
330	12	60	12.4	18.4

Barcode-Product-Label (BPL)

Dry Packing Process and Materials

Note:
Moisture-sensitive product is packed in a dry bag containing desiccant and a humidity card.
Regarding dry pack you will find further information in the internet. Here you will also find the normative references like JEDEC.

Disclaimer

OSRAM OS assumes no liability whatsoever for any use of this document or its content by recipient including, but not limited to, for any design in activities based on this preliminary draft version.
OSRAM OS may e.g. decide at its sole discretion to stop developing and/or finalising the underlying design at any time.

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact our Sales Organization.
If printed or downloaded, please find the latest version on the OSRAM OS website.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office.By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product and functional safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.
OSRAM OS products are not qualified at module and system level for such application.
In case Buyer - or Customer supplied by Buyer - considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales Partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyse and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer.

Glossary

${ }^{1)}$ Brightness: The brightness values are measured with a tolerance of $\pm 11 \%$.
${ }^{2)}$ Reverse Operation: Reverse Operation of 10 hours is permissible in total. Continuous reverse operation is not allowed.
${ }^{3)}$ Photocurrent:The photocurrent values are measured (by irradiating the devices with a homogenous light source and applying a voltage to the device) with a tolerance of $\pm 11 \%$.
${ }^{4)}$ Forward voltage:The forward voltages are measured with a tolerance of $\pm 0.1 \mathrm{~V}$.
${ }^{5)}$ Wavelength: The wavelengths are measured with a tolerance of $\pm 1 \mathrm{~nm}$.
${ }^{6)}$ Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
${ }^{7)}$ Tolerance of Measure:Unless otherwise noted in drawing, tolerances are specified with ± 0.1 and dimensions are specified in mm .

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4，D－93055 Regensburg www．osram－os．com © All Rights Reserd．

EU RoHS and China RoHS compliant product
此产品符合欧盟 RoHS 指令的要求
按照中国的相关法规和标准，不含有毒有害物质或元素。

Opto Semiconductors

