SPL PL90

Radial T1 3/4

Pulsed Laser Diode in Plastic Package 25 W Peak Power

Applications

- Electronic Equipment
- Equipment Illumination (e.g. Curing, Endoscope)
- Highbay Industrial

- Industrial Automation (Machine Controls, Light Barriers, Vision Controls)
- Safety and Security, CCTV

Features:

- Laser wavelength 905 nm
- Suited for short laser pulses from 1 to 100 ns
- Laser aperture 200 μm x 2 μm
- Cost effective plastic package for high volume applications

Ordering Information

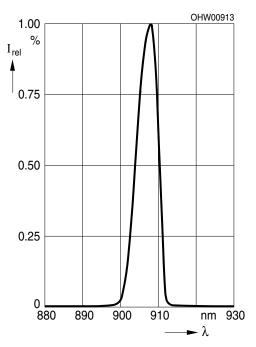
Туре	Peak output power	Ordering Code
	typ.	
	$I_F = 30 \text{ A}; t_p = 100 \text{ ns}; f = 1 \text{ kHz}; T_A = 25 ^{\circ}\text{C}$	
	P _{opt}	
SPL PL90	25 W	Q62702P1760

M	avir	num	Rai	tings
IVI	алп	HUIH	Na	แแนง

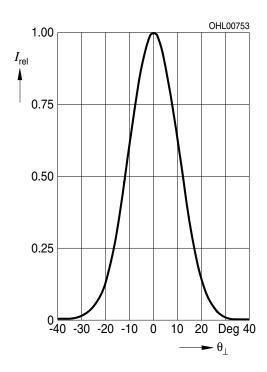
T,	=	25	$^{\circ}C$

Parameter	Symbol		Values
Operating Temperature	T _{op}	min.	-40 °C
	ОР	max.	85 °C
Storage Temperature	T _{stg}	min.	-40 °C
	Sig	max.	100 °C
Peak output power	P _{opt}	max.	30 W
Forward current	I _F	max.	40 A
Pulse width (FWHM)	t _P	max.	100 ns
Duty cycle	dc	max.	0.1 %
Reverse voltage	V_R	max.	3 V
Soldering temperature	T _s	max.	260 °C
(2 mm from bottom edge of case)	O		

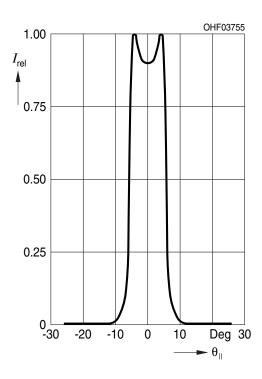
-	$\overline{}$	H-	_		- 4	 _ 4	
-1	-	m	\boldsymbol{a}	ro	OT	CT	
А			\boldsymbol{a}				ics


 $I_{_{\rm F}}$ = 30 A; $t_{_{\rm p}}$ = 100 ns; f = 1 kHz; $T_{_{\rm A}}$ = 25 °C

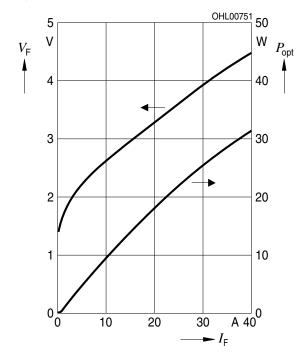
Parameter	Symbol		Values
Operating voltage	V _{op}	min.	3.3 V
		typ. max.	4.3 V 5.3 V
Peak Wavelength	λ_{peak}	min.	895 nm
		typ.	905 nm
		max.	915 nm
Spectral bandwidth at 50% I _{rel,max}	Δλ	typ.	7 nm
Peak output power	P_{opt}	min.	20 W
	op.	typ.	25 W
		max.	30 W
Beam divergence (FWHM) parallel to pn-junction	$\Theta_{_{\parallel}}$	typ.	9 °
Beam divergence (FWHM) perpendicular to pn-junction	Θ_{\perp}	typ.	25 °
Threshold current	l _{th}	min.	0.5 A
		typ.	0.75 A
		max.	1 A
Rise time	t,	typ.	1 ns
Fall time	$t_{\scriptscriptstyle{f}}$	typ.	1 ns
Aperture size	wxh	typ.	200 X 2 μm²
Temperature coefficient of wavelength	TC_{λ}	typ.	0.28 nm / K
Temperature coefficient of optical power	TC _P	typ.	-0.4 % / K
Thermal resistance junction ambient real	R_{thJA}	typ.	160 K / W


Relative Spectral Emission 1), 2)

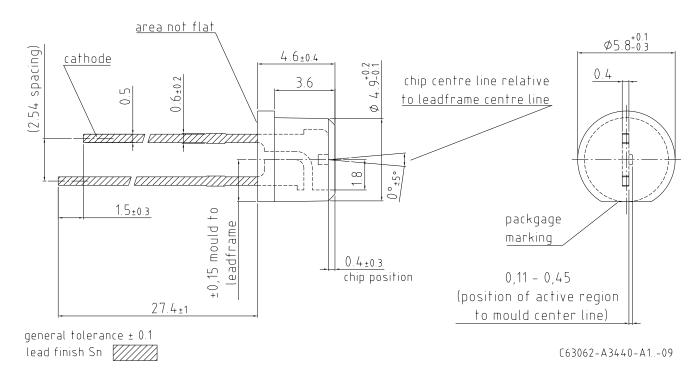
$$I_{rel} = f(\lambda); I_F = 30 \text{ A}; P_{opt} = 25 \text{ W}; t_p = 100 \text{ ns}$$


Far-Field Distribution Perpendicular to pn-Junction 1), 2)

$$I_{rel} = f(\Theta_{\perp}); P_{opt} = 25 \text{ W}$$


Far-Field Distribution Parallel to pn-Junction 1), 2)

$$I_{rel} = f(\Theta_{II}); P_{opt} = 25 \text{ W}$$



Opt. Power / Forward Voltage 1), 2)

$$P_{opt}$$
, $V_F = f(I_F)$

Dimensional Drawing 3)

Approximate Weight: 241.0 mg

Package marking: Anode

Notes

Depending on the mode of operation, these devices emit highly concentrated visible and non visible light light which can be hazardous to the human eye. Products which incorporate these devices have to follow the safety precautions given in IEC 60825-1.

For further application related informations please visit www.osram-os.com/appnotes

Disclaimer

Disclaimer

Language english will prevail in case of any discrepancies or deviations between the two language wordings.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the OSRAM OS Webside.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Product safety devices/applications or medical devices/applications

OSRAM OS components are not developed, constructed or tested for the application as safety relevant component or for the application in medical devices.

In case Buyer – or Customer supplied by Buyer– considers using OSRAM OS components in product safety devices/applications or medical devices/applications, Buyer and/or Customer has to inform the local sales partner of OSRAM OS immediately and OSRAM OS and Buyer and /or Customer will analyze and coordinate the customer-specific request between OSRAM OS and Buyer and/or Customer.

Glossary

- Typical Values: Due to the special conditions of the manufacturing processes of LED, the typical data or calculated correlations of technical parameters can only reflect statistical figures. These do not necessarily correspond to the actual parameters of each single product, which could differ from the typical data and calculated correlations or the typical characteristic line. If requested, e.g. because of technical improvements, these typ. data will be changed without any further notice.
- Testing temperature: $T_A = 25$ °C
- Tolerance of Measure: Unless otherwise noted in drawing, tolerances are specified with ±0.1 and dimensions are specified in mm.

Published by OSRAM Opto Semiconductors GmbH EU RoHS and China RoHS compliant product Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

此产品符合欧盟 RoHS 指令的要求; 按照中国的相关法规和标准,不含有毒有害物质或元素。

